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Abstract 

Beginning with a general ansatz for the energy-momentum-stress tensor of masses in 
uniform rotation we determine uniquely the energy tensor and the gravitational field 
of two particular systems; namely, a thin, rotating, hollow cylinder and a spinning rod 
(dumb-bell). All calculations are made within the framework of linearised theory, but 
no restriction is made upon angular velocity, except that given by the velocity of light. 

1. Introduction 

Soon after the formulation of Einstein's theory of general relativity, 
Thirring (1918, 1921) made use of  the linearised field equations in order 
to investigate gravitational effects of  a uniformly rotating shell (Thirring 
effect). In another paper Lense & Thirring (1918) studied the influence of 
rotating planets upon the motion of their moons. The main result of  these 
papers is the reduction of gravitational effects to 'centrifugal' and 'coriolis' 
forces. In his ansatz for the energy tensor Thirring did not take into 
consideration the interactions of  matter (stresses) which enforce the rota- 
tion. For  this reason his calculations were revised by Bass & Pirani (1956) 
and independently by H6nl & Maue (1956). Recently, Brill & Cohen (1965) 
- - a n d  especially Teyssandier (1970)--have developed a method of succes- 
sive approximation with respect to angular velocity ,o, beginning with a 
nonrotating spherical base metric. ,  However, aU these papers still restrict 
to small velocities v. We will remove this restriction, for we want to study 
the behaviour of  energy tensor and linearised field for high velocities, which 
in the case of  a rotating, hollow cylinder differs essentially f rom that of  
incoherent matter. 

As an application we calculate the field of  the thin, infinitely long, hoUow 

t This work was supported by the 'Deutsche Forschungsgemeinschaft'. 
The author is indebted to the referee for drawing his attention to the work of G. L. 

Clark, who in another way has also investigated the gravitational field of rotating bodies 
(Clark, 1948, 1950). 
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cylinder, where the typical effects and analogies with electrodynamics are 
coming out  part icularly well. 

In  a second example  we determine the stress tensor  and the linearised 
field of  a spinning rod  (dumb-bell) .  We can show that  our  results, being 
valid in the short-range field as well as in the radiat ion zone, are in agreement  
with a far-field solution for  small velocities given by Einstein (1916, 1918) 
and Landau  & Lifshitz (1967a).t  

2. Energy Tensor of Uniformly Rotating Masses 

2.1. Linearised Field Equations 
For  the metric  tensor  g~v of  space-time we make  the ansatz:~ 

g,~ = ~,~ + Y,~, ~',~ = ~ - - I - ~ , ,  4' = ~ o  ~u~ (2.1.1) 

where Vu~ = Minkowski  tensor  (signature -2 ) .  
In  order  to take advantage of  the symmetries of  rotat ing bodies we do 

not  restrict ourselves to rectangular  coordinates.  Under  the conditionw 

~b, ~ , ~ = 0 (2.1.2) 

the linearised field equat ions are 

~bu~ "*' ,r~ = -2~:T.~ (2.1.3) 

with 

T ,  ~ ,f~ = 0 (2.1.4) 

where Tu~ is the energy tensor  wi thout  taking into account  gravi tat ional  
interactions. In  Cartes ian coordinates  x, y, z we get the solution of  (2.1.3) 
as re tarded integrals: 

x f Tu~[x a, t - (?/e)]dV (2.1.5) 

with dV as the three-dimensional  volume element in the Minkowski  space. 

2.2. Stress Tensor 
The total  energy-momentum-s t ress  tensor may  be writ ten in the well- 

known form (neglecting heat  flow) 

T~v = p0 c 2 ut~ uv - %v (2.2.1) 

with the kinetic te rm P0 c 2 uu u, representing the mot ion  and the stress term 
%~ arising f rom the nongravi ta t ional  interactions. (p0 c 2: p roper  density 

? The knowledge of the short-range field of the dumb-bell enables us to calculate the 
gravitational self-interaction of the system (radiation damping). These calculations will 
be published in a second paper. 

:~ Greek suffices range and sum over 1, 2, 3, 4; Latin suffixes over I, 2, 3. 
w ll~ denotes covariant differentiation with respect to %v; I ~ partial differentiation. 
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of proper energy; u u: 4-velocity of matter). The symmetrical tensor %v has 
the following property (Synge, 1956): 

cruv u ~ = 0 (2.2.2) 

From the relations of orthogonality (2.2.2) and the conservation laws for 
T ~ (2.1.4) it is easy to derive the equation of continuity for the '4-current 
of matter' in the case of rigid rotation: 

(po u ~) ~,, = 0 (2.2.3) 

Because of the symmetries of those systems, which we want to investigate, 
we introduce cylindrical coordinates r, r z. Then ~/u, takes the form ( 00 

- - r  2 0 (2.2.4) 
~Tu~ = 0 -1  

0 0 +1 

In this coordinate system, for uniform rotation about the z-axis, the 
4-velocity of any point of the body is given by 

U r = b/z = 0 ,  b/~b = 60 U4 1 (2.2.5) 
c~/(1 - fiE), ~/(1 - / 3  2) 

From the conservation equations (2.1.4) follows with regard to the relations 
(2.2.1), (2.2.2), (2.2.3) for a "~ in cylindrical coordinates'~ 

a~" I, - race + 1 cr ~ _ P0 602 r 3 ~,r 
r 1 - /3 2, ar Iv + r = 0, 

az v i , + l a z r = 0 ,  a,r176 a~4 (2.2.6) 
r c 

Any stress tensor of a uniformly rotating mass system, the rotation of which 
is induced by nongravitational forces, must be solution of (2.2.6) in the 
lowest order. But generally, the seven conditions (2.2.6) are not sufficient 
for the determination of  all ten components of ~u~ without knowing special 
elastic or symmetrical properties of the system. 

3. Gravitational Field of a Rotating Hollow Cylinder 

3.1. Energy,Momentum-Stress Tensor 

In case the rotating body is a thin, hollow cylinder, only pure tangential 
stresses can be expected. Therefore, in cylindrical coordinates all space-like 

t The eighth condition a"uHu = 0 is not independent of the other equations. 
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components of  ~ are zero, with the exception of ,r**. Then 0.~ is deter- 
mined completely by (2.2.6) and one gets: 

6o2 
tr$$ 006o2 0 .$4 = o'$~b~r 2, 0 .44 = 0.$~ ~ - r  4 (3.1.1) 

1 - - / 32 ,  c 

According to (2.2.1) and (2.2.5), the only non-vanishing components of the 
energy tensor are 

T$4 = T45 = Po c6o, T44 = Po c2( 1 + /32)  (3 .1 .2)  

Transformation to Cartesian coordinates yields 

0 0 0 -P0 c6o~ t 
T ~  = 0 0 0 P0 c6o (3.1.3) 

0 0 0 
--PO c6oy t90 CoJX 0 PO C2( 1 + / 3 2 ) /  

Thus we find the following. Firstly, in those components of T "~, being 
space-like with reference to the inertial system, stress and kinetic tensor 
mutually cancel. Secondly, T "v depends on Oo c a and not on Po c2/(1 -/32) �9 
So for high velocities the behaviour of T "v differs essentially from that of 
incoherent matter (T. .  = po c z uu u~). 

Restricting ourselves to elastic bodies, we see that the proper energy 
density Po c 2 = T.~ u" u ~ is composed of two components: 

/90 C2 = Poo r .~_ Eo (3.1.4) 

where the elastic energy e0 depends on rotation 6o and elastic properties 
of  the matter, while p00 c 2 is the proper energy density without rotation. 
From the theory of elasticity we knowt (Landau & Lifshitz, 1967b) that 
in the case of small deformations the elastic energy is a quadratic function 
of the stress tensor. Therefore we should think that eo behaves proportional 
to /34 / (1  --/32)2. But this is not right at all. The only quadratic expressions 
which can be derived from ~r "v are cr~cr~'/3 and (0. ~)2. Then with (3.1.1) 
we easily find that 

O'er ~ O "~/3 = (0.~tct) 2 = p0 2 C4/3 4 (3 . I . 5a )  

Thus 

Co = c~. p02 c 4/34 (3.1.5b) 

where ~ is a function of the elastic properties of the modulus of elasticity 
E and Poisson's ratio/x. If  we know oc, then from (3.1.4) and (3.1.5b) P0 c 2 
can be determined by a quadratic equation. 

t In our case, for small deformations, the possibility of relativistic generalisation of 
classical 'deformation gradient' is obvious. Detailed discussions about general relativistic 
treatment of deformable bodies have recently be made [for example Bragg (1970) or 
Oldroyd (1970)]. 
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3.2. Integrals of FieM Equations 
According to the well-known formula of transformation of three- 

dimensional volume 

dV= dV0~/(1 - f12) (3.2.1) 

we substitute the V-integration in (2.1.4) by an integration over the proper 
space of matter Vo. Because of/3 = const., the nonzero components of ~b~ '~ 
a r e  

p o 

~b44 = K e 2 ( 1  f 2~- + f12) ~/(1 -/~2) -~dVo (3.2.2) 

P0 x ~Y4 =-2c~o~/(1- f12)(-:-dVo 
d r 

We state, that in the (nonrealistic) case of vanishing elastic energy, i.e. 
rigidity (c~ = 0), the integrals (3.2.2) are finite for each possible value of fl 
and the gravitational field is becoming zero for/3 -+ 1, with maxima lying 
at fl = ~/�89 for ~b"4(/3) and at/3 = ~/~- for ~44(/~). Of course, real bodies will 
break up long before/3 ~ 1 is reached, and for all nonrigid bodies (c~ r 0) 
there will be a limit in/3, where the condition of small deformations 
is no longer valid. Nevertheless, it is interesting to note that for small, but 
only theoretical, values of e, the gravitational field ~b ~,  which is induced by 
the rotating hollow cylinder, may have maxima with respect to fl before the 
body is breaking up. 

3.3. Infinitely Long, Hollow Cylinder 
Finally we determine the gravitational effects of a uniformly rotating, 

hollow cylinder, which is infinitely long and homogeneous. The explicit 
performance of integration of (3.2.2) yields for the nonzero components 
of the cylindrical symmetric field 7,v (2.1.1): 

R 2 
Y = 2KeoJ ~ Fx, (1) r > R 7x4 = - x 7,4 

r 
7== = 744 = �89 = [~c(1 + 132)eZF]ln ~ (3.3.1a) 

(2) r < R 
7x4 ~ --KCr..O ]2y ,  

Yy4 = -}-Ke(.o F x  (3.3.1b) 

where F = f pordr and R = radius of the cylinder. 
Outside the cylinder we find a 'centrifugal' field but no 'coriolis' field, 

while inside there is a pure homogeneous 'coriolis' field. We note analogy 
to electrodynamics (infinitely long coil). 
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4. Gravitational FieM of a Spinning Rod (Dumb-bell) 

By the general conditions (2.2.6) for the stress tensor of rotating bodies 
not only systems with pure tangential stresses are marked out, but also those 
with pure radial stresses, where only er r ~ 0. Stresses of this kind are to 
be found, for example, in a thin rod rotating about its center of mass S. 
Then we get by integration of (2.2.6) (in cylindrical coordinates): 

~r "~ = 0 for all other components. The constant of integration A is deter- 
mined by the condition, that cr rr vanishes at the ends of the rod. In case 
S lies in the center point of the rod (length = 2R), one gets 

R 

A = - f  peo 2 rl 2 dq (4. lb) 
0 

Herewith the energy tensor is in Cartesian coordinates: 

X 2 
-OOJ ~ xy - ~ ~ 0 P - ~  

l xy rr y2 
T#V=~_pr.o2xyo_rgcr 2 r 2  r r  p~o _ - ~ cr 0 peoJx 

0 0 0 

\ - p c o J y  pc~ox 0 pc 2 

(4.2) 

As in the case of incoherent matter energy-density with reference to the 
inertial system is of the form pc 2= poe2~(1 - /3  2) in opposition to that of 
the rotating hollow cylinder (pure tangential stresses), compare (3.1.3). 

The gravitational field, belonging to (4.2), is given by the retarded 
integrals (2.2.6). Specialising to a dumb-bell, the mass of  the rod may be 
neglected, compared with the two equal masses at the ends (proper masses 
too). Of course this is valid only as long as elastic energy within the rod 
is small (see Section 3). Then the integrals (2.2.6) may be calculated by the 
method of Lienard-Wiechert, and one finds: 

/E i 2,  " 2 t 7 COS c O t ( r ) ]  ~bxx = _Eft2 sm cot(i ) 1 * ar ~ t 
t/=1'2 ~'.) R o 

2 t " 2 t 

~yy:__Efl 2 COS cot(i) 1 * drSm coG) 
R'.) R R(',) 

i= , 0 
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~xy = E/32 cos ~ot,) 1 * COS o~t,) sin o~t(, 
R(~) ~ dl -, = R(r) 

0 

f " t 

f t 
~b r4 = E/3 ~ ( -1)  cosoJt(,) 

~ 4 4  ~ - E  

39 

i__ lz~, 2 R(o 

m0 ir ~ t  
E - t '  = t - - ,  ? ' =  ?(t '), /2' = /2 ( t ' )  

2rr ~/(1 - fiE), e 

= ? i fl(X sin ~ot -- y cos wt) (4.3) 

where + and - stand for points on the right and left side o f  the rod, 
respectively; (1) and (2) denote the first and second mass, (r) a point  o f  
the rod;  and * upon the integrals means that integration over the left 
and right side o f  the rod is to be taken separately with regard to the 
retardation. 

As is well known, Einstein has given a far-field approximation for/32 < 1 
[compare Einstein (1916, 1918) or Landau  & Lifshitz (1967a)], 

1 a 2 (  ~ b 
~ o a 7 ~  ~ pooX x dVt,-rom (4.4) 

where r0 is the distance f rom the mass-system to the field point. The 
components  ~b ~4 are determined by (2.1.2). We easily see that  our  result 
(4.3), being valid in the short-range field as well as in the radiation zone 
and without  restriction upon/3,  is in agreement with (4.4). 
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